Новый марсоход займётся поиском жизни - «Новости дня» » «Новости Дня»
Jones
Опубликовано: 16:01, 12 декабря 2019
Жизнь / Новороссия / Все новости

Новый марсоход займётся поиском жизни - «Новости дня»

Европейское космическое агентство (ESA) подтвердило участие в совместном с NASA проекте высадки на Марс в 2021 году самоходного робота для поиска следов внеземной жизни в марсианских породах, а также для сбора образцов с их возможным последующим возвращением на Землю. Проект включает несколько планируемых...
Новый марсоход займётся поиском жизни - «Новости дня»

Европейское космическое агентство (ESA) подтвердило участие в совместном с NASA проекте высадки на Марс в 2021 году самоходного робота для поиска следов внеземной жизни в марсианских породах, а также для сбора образцов с их возможным последующим возвращением на Землю.



Проект включает несколько планируемых запусков ракет в сторону Марса начиная с июля 2020 года. Первая часть проекта — высадка марсохода в рамках миссии Mars 2020 в марсианском кратере Езеро. Эта часть проекта наименее амбициозна и давно в процессе подготовки по следам двух успешных посадок марсоходов Curiosity и Opportunity. Mars 2020 — это копия робота Curiosity, по крайней мере в отношении его ходовой части, однако он будет оснащён другим набором инструментов, предназначенных именно для поиска следов жизни. В новом марсоходе предусмотрен набор научных инструментов, специально предназначенных для обнаружения органических соединений, которые могли бы указывать на следы жизнедеятельности на уровне микроорганизмов, хотя бы в далёком прошлом. В настоящее время NASA традиционно проводит конкурс среди всех желающих на выбор лучшего названия для будущего робота.



В отличие от всех предыдущих марсоходов новый робот также будет не только исследовать выбуренные образцы пород, но и «коллекционировать» их, откладывая в герметичный контейнер, который будет храниться на поверхности Марса для последующей пересылки на Землю. Программа возвращения контейнера с образцами предусматривает запуск в будущем ещё двух космических кораблей к Марсу. Задача первого из них (в районе 2026 года) — доставить посадочный модуль с роботом-марсоходом, который подберёт контейнер и запустит его обратно на орбиту Марса. При этом контейнер с образцами на некоторое время станет неуправляемым спутником Марса. И, наконец, третий корабль поймает контейнер на орбите и доставит его на Землю, выпустив его в земную атмосферу с приземлением где-то в пустынной местности в штате Юта ориентировочно в 2031 году.



Амбициозность проекта заключается, прежде всего, в том, что космические корабли до этого никогда не возвращали ничего с Марса, как и с большинства других тел Солнечной системы. Единственное космическое тело, с которого были доставлены образцы породы — это Луна (полёты многочисленных «Аполлонов», доставивших на Землю в общей сложности 380 кг лунных пород, и нескольких советских автоматических станций серии «Луна», также доставивших образцы лунного грунта на Землю). Также совсем недавно удалось при помощи двух японских космических кораблей «Хаябуса» и «Хаябуса-2» провести отбор образцов с двух небольших околоземных астероидов — про это мы уже писали. Здесь, таким образом, стоит задача первого в истории (не считая запусков с Луны) запуска на орбиту космической ракеты с поверхности другой планеты. Полностью новыми задачами является «захват» летающего на орбите контейнера с образцами, а также «встреча» и взаимодействие двух марсоходов (второй должен найти и забрать оставленную первым «посылку»).



Пока что эти две части проекта находятся в самой начальной стадии разработки (у проекта на настоящий день даже нет официального названия). Зато его первая часть, Mars-2020 — вполне реальная цель ближайшего времени, и о ней есть смысл рассказать более подробно. Отметим, что примерно в то же время планируется реализация похожего по своим задачам российско-европейского проекта ExoMars.



Геологическая история Марса не похожа на земную. Исходя из рельефа поверхности, в частности, плотности метеоритных кратеров, протогеологические изыскания выделили всего три эпохи, отложения которых проявляются на разных участках планеты. Первые две (нойский и гесперийский периоды) закончились 2—3 миллиарда лет назад, когда на Земле царил архей с зачатками микробной жизни. Предполагается, что нойский период был отмечен наличием воды на поверхности, а также в среднем относительно тёплым климатом. Также для него характерны глинистые минералы, образующиеся на Земле в хорошо обводнённых обстановках. Сравнительно кратковременный гесперийский период — высыхание и «сворачивание» геологической активности с образованием сульфатных минералов и других солей (эвапоритов) в кислой среде. Всё оставшееся время Марс живёт в амазонийский период «угасания» планеты с образованием безводных минералов и оксидов железа — то, что ждёт нашу Землю через пару миллиардов лет.



Интересные нам породы нойской эпохи с обилием глинистых минералов предположительно захоронены последующими отложениями, но во многих случаях они, вместе с гесперийскими, обнажаются в кратерах от удара метеоритов. Кроме того, многие из этих минералов могут образовываться в узких диапазонах температур, и тем самым служат термометрами для определения геологических палеоусловий. Этим и обусловлена тяга к выбору мест посадки преимущественно в кратерах с естественными обнажениями.



История инструментального поиска следов жизни на Марсе открывается ещё экспериментом «Викинга» по обнаружению органического вещества в 1976 году. Исследовалась судьба меченых радиоизотопов углерода, которые, при наличии микробной активности, должны бы были выделяться в атмосферу в составе газа в экспериментальной капсуле с марсианской породой (т. н. labelled release). Практически всё время после «провала» того эксперимента астрофизики по традиции осторожно говорят не о поиске жизни, а о нахождении условий обитаемости и поиске возможных биосигнатур, в частности, в атмосфере.



Одним из неплохих указаний на наличие жизни астробиологи считают метан CH4, а также его гомологи и оксиды углерода (CO2, CO). Для их поисков не обязательно лететь на Марс — можно исследовать с Земли его атмосферу, в частности, её спектр поглощения. И в 2003 году сразу три исследовательские группы объявили об обнаружении метана в количествах, превышающих ожидаемые концентрации при действии только химических процессов. Таким же способом ранее исследование спектра поглощения марсианской атмосферы позволило обнаружить присутствие в ней воды.



Несколько позже марсоход Curiosity наконец обнаружил как признаки метана в атмосфере Марса, так и в 2018 году следы органических молекул в образцах породы, извлечённых с некоторой глубины. Он приземлился в кратере Гейл вблизи экватора, в районе чёткого аллювиального веера — характерной структуры рельефа, соответствующей выносу материала в пролегавшей здесь когда-то дельте реки. Однако робот Curiosity не был предназначен для поиска биосигнатур. Одной из его функцией было выявление потенциально пригодных условий для существования жизни в прошлом. Такая флювиально-озёрная обстановка вполне отвечает условиям обитаемости в прошлом, по крайней мере, судя по земному опыту. Однако одна из загадок результатов Curiosity — отсутствие в кратере Гейл карбонатных минералов. Такие минералы, например обычный известняк (кальцит CaCO3) легко формируются на Земле в подобных обстановках. Кроме того, это и признак наличия CO2 в атмосфере, который за счёт парникового эффекта мог бы в какой-то период поддерживать умеренную температуру на планете для существования жидкой воды.



Подобные геоморфологические условия также установлены для кратера Езеро (Jezero) — целевого объекта космической миссии Mars-2020. Это небольшой (около 45 км) кратер внутри крупного бассейна Изиды (более древнего кратера от очень крупного метеорита). Он расположен в экваториальных широтах в квадрангле Syrtis Major (одном из 30 больших «секторов», на которые для удобства ориентировки разбита планета) недалеко от известной марсианской структуры Nili Fossae — системы грабенов, вероятно, образовавшихся при ударе того же метеорита. Этот участок с породами нойской геологической эпохи примечателен тем, что в декабре 2008 г. разведывательный спутник (Mars Reconnaissance Orbiter) впервые обнаружил в этом месте карбонатные минералы. Результаты исследования минерального состава кратера Езеро опубликованы в ноябре 2019 года в журнале Icarus. Кроме того, этот район находится непосредственно вблизи структур рельефа, указывающих на конус выноса палеореки в озеро.



По сочетанию различных признаков, включая особенности рельефа и закономерности пространственного распределения предполагается, что карбонатные минералы имеют именно озёрное происхождение, осаждаясь в своё время в околобереговой озёрной обстановке подобно аналогичным геологическим условиям на Земле. В этом случае такие минералы могут сохранить биосигнатуры возможной жизни, например, в виде строматолитов — карбонатных построек из цианобактериальных матов. На Земле такие микробиальные сообщества являются первыми из известных нам высокоорганизованных экосистем микроорганизмов, известных с архея. По времени эта эпоха грубо соответствует предположительному периоду живой геологической активности Марса, в котором только и естественно ожидать зарождения жизни.



Запуск космического аппарата с марсоходом Mars-2020 планируется в июле 2020 года, в момент, когда взаимное расположение Земли и Марса на своих орбитах станет наиболее благоприятным для полёта. Эта тактика применяется при планировании абсолютно всех полётов к Марсу: Марс должен в нужный момент оказаться на противоположной от Солнца стороне по отношению к Земле (как говорят астрономы, в «соединении»). В этом случае космический корабль значительную часть времени полёта будет «падать» на Солнце, не расходуя топливо. В таких условиях обычное время подлёта космического корабля к Марсу составляет около 8 месяцев, и приземление аппарата в кратере Езеро планируется в феврале 2021 года.


Европейское космическое агентство (ESA) подтвердило участие в совместном с NASA проекте высадки на Марс в 2021 году самоходного робота для поиска следов внеземной жизни в марсианских породах, а также для сбора образцов с их возможным последующим возвращением на Землю. Проект включает несколько планируемых запусков ракет в сторону Марса начиная с июля 2020 года. Первая часть проекта — высадка марсохода в рамках миссии Mars 2020 в марсианском кратере Езеро. Эта часть проекта наименее амбициозна и давно в процессе подготовки по следам двух успешных посадок марсоходов Curiosity и Opportunity. Mars 2020 — это копия робота Curiosity, по крайней мере в отношении его ходовой части, однако он будет оснащён другим набором инструментов, предназначенных именно для поиска следов жизни. В новом марсоходе предусмотрен набор научных инструментов, специально предназначенных для обнаружения органических соединений, которые могли бы указывать на следы жизнедеятельности на уровне микроорганизмов, хотя бы в далёком прошлом. В настоящее время NASA традиционно проводит конкурс среди всех желающих на выбор лучшего названия для будущего робота. В отличие от всех предыдущих марсоходов новый робот также будет не только исследовать выбуренные образцы пород, но и «коллекционировать» их, откладывая в герметичный контейнер, который будет храниться на поверхности Марса для последующей пересылки на Землю. Программа возвращения контейнера с образцами предусматривает запуск в будущем ещё двух космических кораблей к Марсу. Задача первого из них (в районе 2026 года) — доставить посадочный модуль с роботом-марсоходом, который подберёт контейнер и запустит его обратно на орбиту Марса. При этом контейнер с образцами на некоторое время станет неуправляемым спутником Марса. И, наконец, третий корабль поймает контейнер на орбите и доставит его на Землю, выпустив его в земную атмосферу с приземлением где-то в пустынной местности в штате Юта ориентировочно в 2031 году. Амбициозность проекта заключается, прежде всего, в том, что космические корабли до этого никогда не возвращали ничего с Марса, как и с большинства других тел Солнечной системы. Единственное космическое тело, с которого были доставлены образцы породы — это Луна (полёты многочисленных «Аполлонов», доставивших на Землю в общей сложности 380 кг лунных пород, и нескольких советских автоматических станций серии «Луна», также доставивших образцы лунного грунта на Землю). Также совсем недавно удалось при помощи двух японских космических кораблей «Хаябуса» и «Хаябуса-2» провести отбор образцов с двух небольших околоземных астероидов — про это мы уже писали. Здесь, таким образом, стоит задача первого в истории (не считая запусков с Луны) запуска на орбиту космической ракеты с поверхности другой планеты. Полностью новыми задачами является «захват» летающего на орбите контейнера с образцами, а также «встреча» и взаимодействие двух марсоходов (второй должен найти и забрать оставленную первым «посылку»). Пока что эти две части проекта находятся в самой начальной стадии разработки (у проекта на настоящий день даже нет официального названия). Зато его первая часть, Mars-2020 — вполне реальная цель ближайшего времени, и о ней есть смысл рассказать более подробно. Отметим, что примерно в то же время планируется реализация похожего по своим задачам российско-европейского проекта ExoMars. Геологическая история Марса не похожа на земную. Исходя из рельефа поверхности, в частности, плотности метеоритных кратеров, протогеологические изыскания выделили всего три эпохи, отложения которых проявляются на разных участках планеты. Первые две (нойский и гесперийский периоды) закончились 2—3 миллиарда лет назад, когда на Земле царил архей с зачатками микробной жизни. Предполагается, что нойский период был отмечен наличием воды на поверхности, а также в среднем относительно тёплым климатом. Также для него характерны глинистые минералы, образующиеся на Земле в хорошо обводнённых обстановках. Сравнительно кратковременный гесперийский период — высыхание и «сворачивание» геологической активности с образованием сульфатных минералов и других солей (эвапоритов) в кислой среде. Всё оставшееся время Марс живёт в амазонийский период «угасания» планеты с образованием безводных минералов и оксидов железа — то, что ждёт нашу Землю через пару миллиардов лет. Интересные нам породы нойской эпохи с обилием глинистых минералов предположительно захоронены последующими отложениями, но во многих случаях они, вместе с гесперийскими, обнажаются в кратерах от удара метеоритов. Кроме того, многие из этих минералов могут образовываться в узких диапазонах температур, и тем самым служат термометрами для определения геологических палеоусловий. Этим и обусловлена тяга к выбору мест посадки преимущественно в кратерах с естественными обнажениями. История инструментального поиска следов жизни на Марсе открывается ещё экспериментом «Викинга» по обнаружению органического вещества в 1976 году. Исследовалась судьба меченых радиоизотопов углерода, которые, при наличии микробной активности, должны бы были выделяться в атмосферу в составе газа в экспериментальной капсуле с марсианской породой (т. н. labelled release). Практически всё время после «провала» того эксперимента астрофизики по традиции осторожно говорят не о поиске жизни, а о нахождении условий обитаемости и поиске возможных биосигнатур, в частности, в атмосфере. Одним из неплохих указаний на наличие жизни астробиологи считают метан CH4, а также его гомологи и оксиды углерода (CO2, CO). Для их поисков не обязательно лететь на Марс — можно исследовать с Земли его атмосферу, в частности, её спектр поглощения. И в 2003 году сразу три исследовательские группы объявили об обнаружении метана в количествах, превышающих ожидаемые концентрации при действии только химических процессов. Таким же способом ранее исследование спектра поглощения марсианской атмосферы позволило обнаружить присутствие в ней воды. Несколько позже марсоход Curiosity наконец обнаружил как признаки метана в атмосфере Марса, так и в 2018 году следы органических молекул в образцах породы, извлечённых с некоторой глубины. Он приземлился в кратере Гейл вблизи экватора, в районе чёткого аллювиального веера — характерной структуры рельефа, соответствующей выносу материала в пролегавшей здесь когда-то дельте реки. Однако робот Curiosity не был предназначен для поиска биосигнатур. Одной из его функцией было выявление потенциально пригодных условий для существования жизни в прошлом. Такая флювиально-озёрная обстановка вполне отвечает условиям обитаемости в прошлом, по крайней мере, судя по земному опыту. Однако одна из загадок результатов Curiosity — отсутствие в кратере Гейл карбонатных минералов. Такие минералы, например обычный известняк (кальцит CaCO3) легко формируются на Земле в подобных обстановках. Кроме того, это и признак наличия CO2 в атмосфере, который за счёт парникового эффекта мог бы в какой-то период поддерживать умеренную температуру на планете для существования жидкой воды. Подобные геоморфологические условия также установлены для кратера Езеро (Jezero) — целевого объекта космической миссии Mars-2020. Это небольшой (около 45 км) кратер внутри крупного бассейна Изиды (более древнего кратера от очень крупного метеорита). Он расположен в экваториальных широтах в квадрангле Syrtis Major (одном из 30 больших «секторов», на которые для удобства ориентировки разбита планета) недалеко от известной марсианской структуры Nili Fossae — системы грабенов, вероятно, образовавшихся при ударе того же метеорита. Этот участок с породами нойской геологической эпохи примечателен тем, что в декабре 2008 г. разведывательный спутник (Mars Reconnaissance Orbiter) впервые обнаружил в этом месте карбонатные минералы. Результаты исследования минерального состава кратера Езеро опубликованы в ноябре 2019 года в журнале Icarus. Кроме того, этот район находится непосредственно вблизи структур рельефа, указывающих на конус выноса палеореки в озеро. По сочетанию различных признаков, включая особенности рельефа и закономерности пространственного распределения предполагается, что карбонатные минералы имеют именно озёрное происхождение, осаждаясь в своё время в околобереговой озёрной обстановке подобно аналогичным геологическим условиям на Земле. В этом случае такие минералы могут сохранить биосигнатуры возможной жизни, например, в виде строматолитов — карбонатных построек из цианобактериальных матов. На Земле такие микробиальные сообщества являются первыми из известных нам высокоорганизованных экосистем микроорганизмов, известных с архея. По времени эта эпоха грубо соответствует предположительному периоду живой геологической активности Марса, в котором только и естественно ожидать зарождения жизни. Запуск космического аппарата с марсоходом Mars-2020 планируется в июле 2020 года, в момент, когда взаимное расположение Земли и Марса на своих орбитах станет наиболее благоприятным для полёта. Эта тактика применяется при планировании абсолютно всех полётов к Марсу: Марс должен в нужный момент оказаться на противоположной от Солнца стороне по отношению к Земле (как говорят астрономы, в «соединении»). В этом случае космический корабль значительную часть времени полёта будет «падать» на Солнце, не расходуя топливо. В таких условиях обычное время подлёта космического корабля к Марсу составляет около 8 месяцев, и приземление аппарата в кратере Езеро планируется в феврале 2021 года.

Следующая похожая новость...
Ctrl
Enter
Заметили ошЫбку
Выделите текст и нажмите Ctrl+Enter
Обсудить (0)

      
Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика